Heatwave hot sun. Global warming from the sun and burning. Climate Change.

1173596095

Heatwave hot sun. Global warming from the sun and burning. Climate Change.

Photo by: Rapeepong Puttakumwong

Rapeepong Puttakumwong

This Is How Our Sun Will Die

Every star you see in the sky, including the sun, will someday die. It’s best to get used to that idea now, before things start to get heavy.

September 10, 2020

Thankfully, we’ve got a little bit of time.

Our sun currently powers itself through the fusion of hydrogen into helium in its core. This is generally a good thing, since that fusion process provides all the heat and light and warmth that we have come to enjoy on our little watery rock, 93 million miles away.

But just like ignoring the little red “E” on your gas gauge and getting stuck on your commute to work, eventually the sun will run out of fuel. There will still be plenty of hydrogen in the sun, mind you, but it won’t be down in the core where it can be put to any good use.

With no source of energy to counteract the tireless inward pull of gravity (the same pull of gravity that constantly keeps your feet planted to the ground), the sun will contract. As it contracts, the temperatures and pressures in the core continue to climb (because what else would they do) until they reach a critical point: the point at which helium itself can fuse into carbon and oxygen, again releasing energy and returning the sun to its former glory. Almost.

At this point the core of our sun has a temperature of around 100 million Kelvin. Did I mention that?

Step by Step Process, Sort Of

Image of the Sun, constructed from a mosaic of TRACE images.

534929574

Image of the Sun, constructed from a mosaic of TRACE images.

Photo by: NASA/Bryan Allen

NASA/Bryan Allen

With a core that intense, blazing out radiation like crazy, the outer layers of the sun (made up of all that unused hydrogen and other random elements) bloat up and stretch out. The distended solar atmosphere swells to over 200 times its current radius, bringing the surface of the sun within spitting distance of the Earth. Scorching, insane spitting distance.

But then the helium runs out. The sun collapses. Then it reignites. The sun enlarges. Then it collapses. Then it reignites. Then it enlarges. And so on and so on, a gruesome dance as the sun tears itself apart.

With each new cycle, some parts of the sun’s atmosphere detach completely, billowing out into the solar system, like tattered sails riding on winds of super-heated particles. Eventually, all that will be left is a core of leftover carbon and oxygen–the sun doesn’t have enough gravitational heft to fuse anything heavier. Surrounding that core (now more properly known as a white dwarf, because it’s literally white-hot and relatively small as astronomical objects go) is the leftover guts of our sun, spread throughout the now-defunct solar system.

The intense radiation from the newly-unveiled core (we’re talking X-rays here) rip through those guts, igniting them and enlightening them, causing them to release radiation of their own. The physics word to describe this process is fluorescence, and it’s the exact same physics behind fluorescent light bulbs.

But this is a bit bigger. Visible from light-years away, these planetary nebulae are the swansong of a sun-like star. A beautiful, unique, effervescent illuminated masterpiece, lasting a mere 10,000 years before dimming into the quiet void of interstellar space.

The End

Taken on september 14, 1999. Prominences are clouds of relatively cool dense plasma suspended in the sun's thin corona.

200358337-001

Taken on september 14, 1999. Prominences are clouds of relatively cool dense plasma suspended in the sun's thin corona.

Photo by: Stocktrek

Stocktrek

All stars around the mass of the sun will experience this ultimate fate, including, of course, the sun.

But this process won’t begin to unfold for another 5 billion years. Like I said, we’ve got a little bit of time.

Paul M. Sutter is an astrophysicist at Stony Brook University and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of How to Die in Space.

Next Up

Quiz: Test Your Space Exploration Knowledge

Ahead of the historic May 27th NASA and SpaceX crewed space launch, test your space exploration knowledge!

NFL SUPER STADIUMS Follows the Epic Journey of Building SoFi Stadium

In partnership with the NFL, Discovery and Science Channel go behind the scenes and follow the remarkable journey of constructing SoFi Stadium in an all-new, two-hour special, NFL SUPER STADIUMS premiering Wednesday, September 9 at 8P on Science Channel and Saturday, September 12 at 11A on Discovery.

How Stars Die: The Big Ones

Sometimes when you want to go out, you want to go out with a bang.

This Little Star Made a Blast Bigger Than Our Sun Ever Could

Small stars can pack a surprisingly powerful punch. For an example look no further than the nearest neighbor to our solar system, Proxima Centauri. This little red dwarf just sent off a blast a hundred times more powerful than anything that our own sun ever has.

How Stars Die: The Fate of a Hypernova

All Stars die. Some stars go out with a bang. Some stars go out with a big bang — a supernova. And some stars are capable of something so spectacular, so rare, we don't even have a name for it yet.

A Guide to this August’s Best Astronomy Attractions

Learn more about the exciting things happening in the night sky this month! From the rings of Saturn to the most popular meteor shower of the year, August 2022 has us stargazing all month.

How Do We Know How Old the Sun Is?

Scientists estimate that our Sun is about 4.57 billion years old. They’re surprisingly confident about that number, too, which opens up an immediate question: how do we know that? The short answer is “a lot of science and math”, but I have a feeling you’re not here for the short answer.

It’s Not You, It’s Me: How a Planet Left Our Solar System

Sometimes you just know. Something clicks, you have a realization that this relationship isn’t right, and it’s simply time to go. It can happen to anyone, at any time, even to planets, and even billions of years ago.

We’re Watching a Giant Star Die Before Our Very Eyes

Sure, the Sun is big. It’s over a hundred times wider than the Earth and weighs over 330,000 times the mass of our planet.It’s peanuts.

Asteroid Ryugu Has Dust Grains Older Than the Sun. How?

In 2018 the Japanese space agency sent the Hayabusa2 mission to the asteroid Ryugu, As a part of that mission, the spacecraft blasted material off the surface of the asteroid, put it in a bottle, and sent it back to Earth. Two years later that sample landed in the western deserts of Australia.

Related To: