Photo by: NASA

NASA

Astronomy’s Newest Tool: Artificial Intelligence

In a bowl, combine a tablespoon of hydrogen and a teaspoon of helium to a cup of dark matter. Add a pinch of neutrinos and sprinkling of radiation. Mix well to combine. Heat to several million Kelvin. When mixture has risen, leave to cool for 13 billion years.

August 05, 2021

No, it’s not a recipe for your grandma’s famous chocolate chip cookies – it’s how the universe is made. We understand the fundamental ingredients of the cosmos (which is over 80% dark matter, a form of matter that does not interact with light, plus a decent amount of normal matter and a bit of other stuff), and we know how those ingredients interact (mostly through gravity).

We know that the early universe was far smaller, far hotter, and far denser than the cosmos of today. We also know that it was almost perfectly uniform, with only one-in-a-thousand differences in density from place to place.

We know that when the ingredients of the universe interact through gravity, those tiny differences grow up to become enormous differences. Small regions of slightly-denser-than-average clumps attract more matter on to them, eventually building up to become stars, groups, galaxies, and more.

How do we know that dark matter isn't just normal matter exhibiting strange gravity? A new observation of gravitationally magnified faint galaxies far in the distance behind a massive cluster of galaxies is shedding new dark on the subject. This image from the Hubble Space Telescope indicates that a huge ring of dark matter likely exists surrounding the center of CL0024+17 that has no normal matter counterpart.

Photo by: NASA, ESA, M. J. Jee and H. Ford et al. (Johns Hopkins Univ.)

NASA, ESA, M. J. Jee and H. Ford et al. (Johns Hopkins Univ.)

How do we know that dark matter isn't just normal matter exhibiting strange gravity? A new observation of gravitationally magnified faint galaxies far in the distance behind a massive cluster of galaxies is shedding new dark on the subject. This image from the Hubble Space Telescope indicates that a huge ring of dark matter likely exists surrounding the center of CL0024+17 that has no normal matter counterpart.

But while it’s easy to say, it’s harder to study. That’s because when all the ingredients start really getting together and building large structures in our universe, we can’t follow along with simple equations on the chalkboard. Instead, we have to turn to computer simulations to do science: we input into the simulations what we think the universe is made of and how those ingredients interact, we let the simulation evolve through billions of years of cosmic history, and we compare the simulated universe to real one to see how close we got.

These simulations can be especially time-consuming, especially when trying to recreate large sections of the universe to very fine detail.

Thankfully, we have some tricks up our sleeve to make them go a little faster. The trick is here is a kind of artificial intelligence known as machine learning. To make this work, researchers ran a bunch of low-resolution, easy-to-run simulations. They then let an artificial neural network find the best way to connect those low-resolution simulations to high-resolution ones. The neural network then compared the scaled-up simulations to versions made with traditional (i.e., expensive) methods.

With the links established, the researchers could then just run the low-resolution simulations and be able to make predictions that could be compared to the real universe, potentially radically speeding up our ability to test theories and make accurate models of the universe.

This is a portion of the Hubble Ultra Deep Field North image, which encompasses infrared, visible and ultraviolet wavelengths and shows thousands of galaxies. It includes very distant galaxies, which can only be seen in infrared light, and closer galaxies, which can be seen in wavelengths that include visible and ultraviolet light.

Photo by: NASA, ESA, P. Oesch (University of Geneva) and M. Montes (University of New South Wales)

NASA, ESA, P. Oesch (University of Geneva) and M. Montes (University of New South Wales)

This is a portion of the Hubble Ultra Deep Field North image, which encompasses infrared, visible and ultraviolet wavelengths and shows thousands of galaxies. It includes very distant galaxies, which can only be seen in infrared light, and closer galaxies, which can be seen in wavelengths that include visible and ultraviolet light.

Their work isn’t done, however. Right now their setup is relatively simple – it only includes dark matter. But real observations are based on the positions of the galaxies and stars that we can see with our telescopes. Big, fancy, slow simulations include models of star and galaxy formation, and so right now the only way to compare 1-to-1 with observations is through the traditional route.

The next step for the researchers is to include the formation of stars and galaxies into the low-resolution simulations, hoping that they can pull of the machine learning trick again with a more complicated setup.

Dive Deeper into the Cosmos

Journey Through the Cosmos in an All-New Season of How the Universe Works

The new season premieres March 24 on Science Channel and streams on discovery+.

Paul M. Sutter is an astrophysicist at Stony Brook University and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of How to Die in Space.

Next Up

Do You Want to Go to Space?

Have you always dreamed of going to space? Former NASA astronaut Mike Massimino answers our questions about life at the International Space Station.

Quiz: Test Your Space Exploration Knowledge

Ahead of the historic May 27th NASA and SpaceX crewed space launch, test your space exploration knowledge!

We Have Liftoff: Congratulations to NASA and SpaceX

Here's to NASA, SpaceX, Astronauts Bob Behnken and Doug Hurley, and all of the engineers, scientists, and staff involved with the Saturday, May 30th historical launch.

Top 5 Reasons Why the “UFO Report” Isn’t Interesting to me, a Scientist

Excited by the prospects of the “UFO Report”? As a scientist, I have my doubts. But you can watch UFOS DECLASSIFED: LIVE on Discovery and Science June 30 at 8P where experts discuss what can and can't be explained.

NFL SUPER STADIUMS Follows the Epic Journey of Building SoFi Stadium

In partnership with the NFL, Discovery and Science Channel go behind the scenes and follow the remarkable journey of constructing SoFi Stadium in an all-new, two-hour special, NFL SUPER STADIUMS premiering Wednesday, September 9 at 8P on Science Channel and Saturday, September 12 at 11A on Discovery.

Welcome to the Front Lines of CAL FIRE

The 2020 wildfire season in California has been the worst in state history. More than 4.1 million acres have burned, 9,400 homes and structures have been destroyed, and 33 lives have been lost. Discovery is taking viewers to front lines with CAL FIRE — premiering Sunday, Jan. 3 at 10p ET.

STREET OUTLAWS Returns and the 405 is Back

OKC has been dominating the No Prep Track, but the time has come for the 405 to return to their roots — the streets. STREET OUTLAWS returns on Monday, January 11 at 8p on Discovery followed by Mega Cash Days at 9p on Discovery and streaming on discovery+.

America’s Fastest Racers Return to the Track on STREET OUTLAWS: NO PREP KINGS

The wait is finally over! America’s fastest track racers are back, and the stakes are higher than ever with new cars, new drivers, 15 events, and nearly $900,000 up for grabs. STREET OUTLAWS: NO PREP KINGS returns for an all-new season on October 11 at 8p on Discovery.

Celebrity Car Dealers Showcase the American Dream on MILLION DOLLAR WHEELS

The cutthroat and elite world of celebrity luxury and supercar dealers is on full display is the new discovery+ series, MILLION DOLLAR WHEELS executive produced by academy award®-winner, Jamie Foxx. Watch the series premiere on February 28, 2022 on discovery+.

Get Ready for Puppy Bowl XIX

Puppy Bowl XIX premieres Sunday, February 12 at 2P ET/11A PT with more adoptable puppies from shelters and rescues across the nation.

Related To: